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Abstract

Knowing the name of the location and relative position towards the landmarks not only facilitates

the end-user’s navigation, but also provides the possibility to offer follow-up geographical services.

Visual Location Recognition and Registration (VLRR) is addressed in this report, which refers to

the problem of predicting the name and relative position of the location only using the captured

query image. This problem is almost ill-posed, because on one hand, there is no formal definition

of what constitutes a location and it is still not clear which are the location’s properties that helps

us to perform the recognition. On the other hand, in order to determine the relative position of

the end-user, image registration of large viewpoint variation is required, which itself severely suffers

from the well-known matching ambiguity.

To solve the first difficulty, Bag-of-Features (BoF) model based on visual codebook is used,

where the codebook is obtained by performing an unsupervised clustering on local image features

extracted from the training images. Consequently, each location and query image can be efficiently

represented by the corresponding histograms of the appearance of visual words in the codebook.

Finally a classifier is designed to make the final decision based on the similarity of those histograms

via a supervised learning. However, this BoF model lacks of being aware that different visual words

actually provide different discrimination power in the sequential location classification. Therefore, a

simple and novel weighting scheme, called Visual Words Aggregation Weighting (VWAW) is proposed

and we assume those visual words which are cluster centers of highly aggregated local image features

while with less neighboring words to be more important than others. These two assumptions are

reasonable in the sense that highly aggregated cluster center usually has smaller clustering error and

the visual word with less neighborhood is more discriminant and robust. By applying this weighting

scheme onto the visual word histogram, the experimental results indicate considerable improvement

compared with the state-of-art weighting algorithms.

In order to address the second difficulty, we propose a novel and effective image registration

approach via region pairing. Image pixels are firstly grouped into local homogenous regions using

image over-segmentation and point-to-point feature matching is performed to obtain the putative

matches. We then express the region pairing model via a bipartite graph whose vertices represent the

regions having putative matches inside and the edges represent the similarity measurement between

them. Finally graph matching is utilized to discover the one-to-one region correspondence and

thus provides a helpful feedback for discarding mismatches in the point-to-point putative matches.

Moreover the experimental results demonstrate our proposed significantly boosts the percentage of

correct matches compared with initial SIFT matching.
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Chapter 1

Introduction

1.1 Motivation

It is generally acknowledged that there is an accelerated growing rate for the utilization of widely

deployed personal mobile device and wireless network. Therefore, the integration of computation

intensive algorithm on these mobile devices to achieve information sharing and analysis remains

quite promising. Among all, mobile positioning, which provides its user with his or her geographical

location and follow-up services, receives enormous attention and is broadly applied in the real-time

navigation system designed for mobile device. However the conventional GPS-based positioning

system is vulnerable to either environmental disturbance (e.g. bad weather conditions) or multi-

path effect caused by satellite signal reflecting off from the surrounding objects, such as buildings,

water, trees, etc. Furthermore, such GPS-based approach also requires the mobile device being

equipped with the expensive GPS module. An alternative way is to fully exploit the images captured

by the inexpensive built-in camera on the mobile device and estimate its location through the

reference images tagged by GPS coordinates in the pre-established database. Therefore, in this

report, we describe the problem of Visual Location Recognition and Registration (VLRR) and present

a solution approach for mobile positioning in urban city environment when GPS information is either

unavailable or fairly incorrect due to its limitation mentioned above.

One possible application scenario of VLRR can be best illustrated in Figure 1.1. The end-user,

that’s say a tourist with a camera-mounted mobile phone in the Oxford University, would capture

an image of her surrounding scenery and upload it to our VLRR system through wireless network in

order to determine her location. After processing, our system would provide the end-user not only

the name of location, but also point-to-point matches of captured query image and reference image

of the same location in the pre-established database for the end-user to decide the relative position.
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Figure 1.1: An application scenario of image-based localization for mobile positioning

1.2 Contributions and Outline

Our location recognition and registration presented in this report are based on local image

features which is expected to be invariant towards geometric transformation (e.g., viewpoint vari-

ation) and photometric changes (e.g., different illuminance conditions). Let us first briefly discuss

the major issues associated with each component.

When dealing with location recognition, we are usually most concerned with the issue of loca-

tion representation, since there is no unified definition what constitutes a location and the problem

becomes more challenge as the query image can be easily suffered from different illuminance condi-

tions, global scale changes, rotations and affine deformations, to object occlusion with background

clutter. In Chapter 2, Bag-of-Features model is introduced and used to represent each location as a

distribution of local image features in the form of visual codebook. Recent research and experiments

show that a proper weighting scheme of visual codebook can significantly improve the overall clas-

sification result of scene recognition [1] [2] [3]. Therefore, in this report, Visual Words Aggregation

Weighting is proposed and those visual words which are cluster centers of highly aggregated local

image features while with less neighboring words are highly emphasized.

Another theme that runs through this report is image registration or image matching of large

viewpoint variation. The main difficulties is how to eliminate the ambiguity of local image features

when we try to establish the their correspondences on the interesting points. In Chapter 3, we

propose a novel while effective image registration approach through region pairing. Image pixels

are firstly grouped into local homogenous regions using image over-segmentation and point-to-point

feature matching is performed to obtain the putative matches. We then express the region pairing

model via a bipartite graph whose vertices represent the regions having putative matches inside and

the edges represent the similarity measurement between them. Finally graph matching is utilized to

discover the one-to-one region correspondence and thus provides a helpful feedback for discarding
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mismatches in the point-to-point putative matches.

Our main contributions of this report can be summarized as follows:

• The proposed Visual Words Aggregation Weighting in section 2.3 for Bag-of-Features model

is the first one to use the distribution of local image features belonging to the same cluster as

well as the inter-word relationship to serve as the importance evaluation criteria of the visual

word.

• In section 3.3, the proposed image registration via region pairing is a simple, yet effective

approach, which is capable of achieving significant higher performance on the image pairs with

large viewpoint variation. In particular, our method exceeds state-of-art SIFT matching [4]

on the EPFL dataset [5].

The rest of this report is organized as follows.

Chapter 2 first reviews existing computer vision literature on location recognition and Bag-of-

Features model, then it presents our Visual Words Aggregation Weighting scheme for appropriate

visual word weights assignment. Chapter 3 describes our image registration via region pairing in

details after a comprehensive review of the existing methods for feature mismatch rejection. Finally,

Chapter 4 closes the report with a summary of our contributions and discussion of possible extensions

and future research directions.
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Chapter 2

Location Recognition based on

Bag-of-Features Model

2.1 Introduction

In the 1990s, several researchers have considered ”semantic” location recognition tasks such as

distinguishing city views from landscapes [6] [7] and indoor from outdoor images [8]. Subsequent

computational approaches to location description and recognition have often drawn their inspiration

from the literature on human perception. For example, it is known that people can recognize loca-

tions by considering them in a ”holistic” manner, without having to recognize individual objects [9].

Recently, it has been shown that human subjects can perform high-level location recognition tasks

extremely rapidly [10] and in the near absense of attention [11]. Renninger and Malik [12] propose an

orderless bag-of-textons model to replicate human performance on rapid location recognition tasks.

Another perceptually inspired approach, due to Oliva and Torralba [13], computes a low-dimensional

representation of a location based on several global properties such as ”openness” and ”ruggedness”.

A few recent local recognition approaches [14] [15] try to find effective intermediate representations

in terms of basic natural texture categories, such as water, sky, sand, grass, foliage, etc. A major

drawback of these methods is that these categories must be learned in a fully supervised fashion,

which requires human participation either to hand-segment the training image and label their con-

stituent categories or to provide numerous sample patches of each category. Fei-Fei and Perona [16]

present an alternative unsupervised approach that represent locations as mixtures of small number of

”themes”, or characteristic textures. Meanwhile, several vision researchers have proposed orderless

Bag-of-Features model [17] [18] [19], which is obtained by extracting scale or affine invariant local

features from images, quantizing them into ”visual words”, and learning the distributions of these

words for each locations. Despite its simpleness, this model shows robustness under various imaging

conditions and particularly works well for handling the problem of partial occlusion and background
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clutter, which occur regularly in location recognition task [20] [21] [22].

Several approaches based on Bag-of-Features model [1] [23] [24] are based on the observation

that each visual word actually carries different discriminative information for location recognition

and an appropriate visual word weighting scheme is needed. They take advantage of this insight

by directly incorporating the word weighting methods in text-based retrieval and promising exper-

imental results further validate its feasibility. Our proposed Visual Words Aggregation Weighting

presented in this chapter actually try to quantitatively measure the aggregation of both local image

features belonging to the same visual word and the distribution of visual words in the codebook to

perform weighting. In Section 2.4, the experimental results proves that this consideration becomes

a source of additional discriminative power for location recognition task.

In the following chapter, we will first give a brief overview of the Bag-of-Features model used

for location recognition. Then more details of the proposed Visual Words Aggregation Weighting

will be provided.

2.2 Bag-of-Features Model for Location Recognition

As is shown in Figure 2.1, the Bag-of-Features model for location recognition actually consists

of two stages: off-line training and on-line query. In off-line training, local training image features

extracted by some feature detector and descriptor are grouped into specific numbers of clusters to

form visual codebook. Then a visual words weighting scheme is carried out to measure the different

discriminative power for location recognition embedded in each visual word. Successively, each local

feature are assigned to the nearest visual word and therefore a weighted visual word histogram of

each location is obtained. In on-line query, same strategy is used to derive the weighted visual

word histogram of the query image based on the visual codebook and the weighting coefficients

generated in off-line training. Finally, a bin-to-bin histogram comparisons between each location

and the query image is performed by computing the cosine similarity [25] [26]. The most similar one

would be chosen as the final recognition result and the corresponding location name is output.

2.2.1 Feature Detection

Feature detection which extracts a set of local interested points and salient image regions serves

as the first step and also forms the basis of the Bag-of-Features model. The detected local features are

expected to be invariant to geometric changes(e.g., various viewpoints) and photometric changes(e.g.,

different illumination conditions) so as to be robust in spite of various scale, illuminations and

viewpoint conditions. Numerous research on different feature detectors which emphasize different

aspects of invariance are reported in recent years [4]. And the most popular feature detectors which

give sufficient performance results were shown in [27]. In this report, Hessian-Affine detector [28]

is adopted due to its robustness towards moderate viewpoint variation and uniform illumination
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Figure 2.1: The Bag-of-Features model for location recognition



7

change, which occur quite often in the natural images captured by the mobile device.

The Hessian-Affine detector relies a multiple scale iterative algorithm to spatially localize and

select scale and affine invariant points. At each individual scale, the Hessian-Affine detector chooses

interest points based on the Hessian matrix defined in Equation 2.1:

H(x;σ2) =

[
Lxx(x;σ

2) Lxy(x;σ
2)

Lxy(x;σ
2) Lyy(x;σ

2)

]
(2.1)

where x = (x, y), Lab(x) is second partial derivative in the a direction and Lab(x) is the mixed

partial second derivative in the a and b directions. It is important to note that the derivatives

are computed on the image I(x) smoothed by a Gaussian kernel g(σ2)) with the variance of σ2:

L(x) = g(σ2) ∗ I(x). The selection criterion for Hessian interest points is to find local extrema of

both the determinant and the trace of the Hessian matrix shown in Equation 2.2:

DET (H(x)) = σ2(Lxx(x;σ
2)Lyy(x;σ

2)− L2
xy(x;σ

2))

TR(H(x)) = σ(Lxx(x;σ
2) + Lyy(x;σ

2))
(2.2)

Furthermore Hessian-Affine detector uses an iterative shape adaptive algorithm to estimate

the local affine transform for each interest point in order to obtain invariance against affine trans-

formed images. As is shown in Figure 2.2, in spite of the affine deformation caused by two different

viewpoints, the regions detected by the Hessian-Affine detector clearly correspond.

Figure 2.2: Local features detected by the Hessian-Affine detector from two different view

2.2.2 Feature Description

Once the local features in image such as interest points are detected, feature description which

servers as the second step will be applied to depict the local neighborhood region of the salient

points or patches as high-dimensional descriptor vectors. Such descriptors should be distinctive while

keep invariant and robust to various image transformation such as affine distortions, scale changes,

illumination changes or occlusions. Common feature descriptors include differential invariants [29],
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steerable filters [30], moment invariants [31], complex filter [32], shape context [33], spin images [34]

and the recently developed Scale Invariant Feature Transform(SIFT) [4]. According to a fairly

comprehensive review on these feature descriptors [35], SIFT descriptor outperform all the others

as it is shown to be more robust to various image transformation like rotation, scale changes, affine

transformation and illumination changes. The robustness and the distinctive character of the SIFT

descriptor make it a good choice to be used in this report. And detailed mathematical investigation

of this algorithm is provided as follows:

Developed by David Lowe [4], SIFT descriptor which belongs to a kind of distribution-based

methods that represent certain region properties by multidimensional histograms, is a 3D histogram

of gradient location and orientation, where location is quantized into a 4 × 4 location grid and the

gradient angle is quantized into eight orientations. Thus, the resulting descriptor is of dimension

4 × 4 × 8=128. For details, there are two steps for computing SIFT descriptor: Orientation

assignment for interested points and 128 dimensional descriptor vectors generations. In the first

step, the gradient magnitudes m and local orientations ϕ at the interest point I(x, y) should be

firstly calculated as:

m =
√
(I(x+ 1, y)− I(x− 1, y))2 + (I(x, y + 1)− I(x, y − 1))2

ϕ = tan−1((I(x, y + 1) + I(x, y − 1))/(I(x+ 1, y)−I(x− 1, y)))
(2.3)

Both the magnitude and orientation calculations for the gradient are weighted by the Gaussian-

smoothed image L(x, y, σ) at the point’s estimated scale σ so that all computations are performed

in a scale-invariant manner. Then an orientation histogram with 36 bins is formed by adding each

sample in a neighboring Gaussian-weighted circular window, with each bin covering 10 degrees.

The peaks in this histogram correspond to dominant orientations. Once the histogram is filled, the

orientations corresponding to the highest peak and local peaks that are within 80% of the highest

peaks are assigned to the interest point. In the case of multiple orientations being assigned, an

additional interest point is created having the same location and scale as the original interest point

for each additional orientation. This first step is to assign orientations to points at particular scales,

which ensured invariance to image location, scale and rotation. After that, in the second step, the

descriptor vectors is computed as a set of orientation histograms on (4 × 4) pixel neighborhoods.

These Histograms contain 8 bins each, and each descriptor contains a 4 × 4 array of 16 histograms

around the interest point. This leads to a SIFT feature vector with 4 × 4 × 8 = 128 elements.

This vector is finally normalized to enhance invariance to changes in illumination. The computation

process of SIFT descriptor is illustrated in Figure 2.3.

2.2.3 Visual Codebook Generation and Word Weighting

The third step, clustering the feature descriptors in their feature space into a specific number

of clusters then generating appropriate visual word weights is considered as an important step
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Figure 2.3: Illustration of the SIFT descriptor. After orientation assignment for interested points,
a histogram of gradient orientation is formed in each grid cell. 2×2 grid is depicted for a better
facility of illustration. 8 orientation bins are used in each grid cell therefore giving a descriptor of
dimension 32 =(2×2×8).

since it would have a significant impact on the final performance of the whole location recognition.

Different from the way that the codebook is obtained in case of text, which is the natural results

from the words occurring in the document collections, the construction of visual codebook involves

two critical issues: how to choose an efficient clustering algorithms especially for a large quantity of

feature descriptors and the problem of setting up an optimal codebook size.

For the first issue, it is well known that generating clusters for large quantity of feature descrip-

tors presents challenges to many conventional clustering algorithms [23]. The size of data essentially

rules out the computation demanding methods such as mean-shift [36] and spectral clustering [37].

Although K-Means is the most popular clustering algorithm due to its simplicity for implementa-

tion [16] [19], the traditional ”flat” K-Means clustering still has difficulty to scale to large feature

descriptors which results in high computational complexity. In order to solve this problem, Hier-

archial K-Means proposed by Nister and Stewenius [20] is utilized in this report. Unlike the ”flat”

K-Means defining K to be the final number of clusters, in Hierarchial K-Means, it is defined as the

number of group partitioned in each iteration. First, an initial K-Means clustering runs on the fea-

ture descriptors with the output of K cluster centers. Then the feature descriptors are partitioned

into K groups, where each group consists of those being closest to a particular cluster center. The

same process is then applied to each group of the feature descriptors up to L times, recursively

defining clusters by splitting each group into K new groups and resulting in KL clusters. Figure 2.4

shows the illustration of the Hierarchical K-Means.
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Figure 2.4: Illustration of Hierarchical K-Means. The hierarchical quantization is defined at each
level by K clusters (in this case K=3)

For the second issue, since the visual codebook is built using cluster centers obtained from the

clustering algorithm, the optimal number of clusters cannot be determined automatically. So setting

a suitable size of codebook is of critical importance, involving the trade-off between discriminativity

and generalizability. With a small codebook, the visual words is not very discriminative because

dissimilar feature descriptors can be mapped to the same visual words. One the other hand, as the

codebook size increases, the visual words becomes more discriminative, but meanwhile less gener-

alizable and forgiving to noise, since similar feature descriptors may be mapped to different visual

words. However, although some recent studies tend to show that larger dictionary size generally

improve the quality of Bag-of-Features model, using a large codebook size also increase the cost as-

sociated with clustering feature descriptors, computing visual word weights, assigning visual words

and running supervised classifiers. In this report, we use the codebook size 1000-5000 for the Paris

database.

The problem of word weighting comes from the interesting observation that each visual word

actually carries different discriminative information for location recognition therefore cannot be

treated equally. Well-designed visual word weighting scheme can significantly improve the overall

performance of location recognition and also alleviate the influence of visual codebook size on the

recognition performance. In Section 2.3, detailed explanation of the proposed Visual Word Aggre-

gation Weighting shall be given.

2.2.4 Visual Words Assignment

The final step is to assign visual word selected from the visual codebook to each feature de-

scriptor and represent each location and query image by the weighted visual word histogram. For

such visual word assignment, a nearest neighbor vector quantization [16] [23] [19] is used in this

report. Based on this scheme, two feature descriptors are considered identical if they are assigned

to the same visual word(cluster center). One the contrary, two feature descriptors assigned to dif-

ferent(even very close) visual words are considered totally different. After the vector quantization,

a weighted visual word histogram of each location and query image can be derived by multiplying

the frequency counts of the visual words with their corresponding weights obtained in the pervious
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step.

2.3 Proposed Weighting Scheme for Visual Codebook

The analogy between visual words in Bag-of-Features model and text words in Bag-of-Words

model [38] provides opportunities for migrating text-based retrieval techniques to solve problems

in image data. Consequently, as is shown in table 2.1 , some word weighting schemes are also

employed to improve the recognition performance in image domain. Up to our knowledge, term

frequency-inverse document frequency (TF-IDF) weighting is the most popular scheme applied to

image recognition based on Bag-of-Features model [23], [24]. In TF-IDF, the weight wij of the visual

word vi in class dj consists of two parts: term frequency (TF) and inverse document frequency (IDF).

On one hand, TF is the number of occurrences of visual word vi in class dj , assuming visual words

with high frequency of occurrences in the same class should be regarded as important. on the

other hand, IDF measures the ratio of classes having visual word vi to the total number of classes,

indicating the more classes visual word vi belong to, the less discriminative it would be in the

following classification, therefore, vi should be regarded less important than the other visual words.

TF-IDF weighting scheme is actually quite similar towards the basic principle of OTSU threshold

and we could further summarize its basic idea into the following two assumptions:

• Visual word with higher frequency of within-class occurrences should be assigned a larger

weight.

• Visual word with less frequency of between-class occurrences should also be assigned a larger

weight.

Table 2.1: Weighting schemes migrated from text-based retrieval(vi: the ith visual word; dj : the jth
class; wij : weight for visual words ti in class dj ; tfij : the number of occurrences of visual word vi
in class dj ; N: total number of classes; ni: the number of classes having visual word vi; TF: term
frequency; IDF: inverse document frequency.)

Weighting Scheme wij

Binary [39] 1 if vi is in dj , 0 otherwise

TF [40] tfij

TF-IDF [24] [23] tfij · log N
ni

However, unlike the text words, visual words generated by Bag-of-Features model lack of se-

matic meanings and are also prone to be inaccurate, this fundamental difference significantly prevents

the performance grain obtained by foregoing mentioned weighting schemes directly migrated from

text retrieval. For example, in Figure 2.5, four query images of three different locations are rep-

resented by Bag-of-Features model using four-word visual codebook for illustration purpose. By

applying those weighting methods directly from text retrieval, such as TF-IDF, the similarity of
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four histograms are equally small. However, it is obviously that image 3 and image 4 are more alike

since it is the same car captured under different viewpoint and environment. In other words, the

weighting scheme for the visual words should reflect such differences (i.e., compared with histogram

1 and 2, histogram 3 and 4 should get a much higher similarity score).

Figure 2.5: Failure of the weighting method directly from texture retrieval when the visual words is
over-discriminative

In order to address the problem illustrated in Figure 2.5, we try to combine the TF-IDF weight-

ing with the aggregation measurement of both local image features around a specific visual word

as well as its neighboring visual words in the codebook. Such combination not only reflects the

visual words’ within-class and between-class importance, but also capture the inter-words relation-

ship, which is essential to compensate the side-effect caused by inappropriate codebook generation.

Inspired by this, a simple while novel Visual Word Aggregation Weighting scheme is proposed in

this report.

Local Image Feature Aggregation Measurement

Given a visual codebook V = {v1, v2, · · · , vn} with the size of n, the local image features f of

training images can be partitioned into O = {o1, o2, · · · , on}, where for each oi, it contains ki local
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features which should be assigned to the visual word vi. Then we define the average quantization

error for visual word vi as follows:

e(vi) =
1

ki

∑
fj∈oi

∥fj − vi∥2 (2.4)

From Equation 2.4 we can see the average quantization error e(vi) actually serves as a perfect

aggregation measurement of local image features indicating how compactly they are distributed

around the corresponding visual word. Smaller this value is, more compact the distribution would

be. Consequently this visual words should be regarded as a better cluster center and be more

discriminative and robust in the following classification. Therefore we define local image feature

aggregation weighting as follows:

wlocal(vi) = log(
1

e(vi)
+ 1) (2.5)

Inter-words Aggregation Measurement

For a given visual word vi, we define the inter-words aggregation measurement in the form of

average distance between the visual word vi and its τ -nearest neighborhood N(vi, τ):

c(vi) =
1

τ

∑
vj∈N(vi,τ)

∥vi − vj∥2 (2.6)

From the Equation 2.6, it is clear that the larger c(vi) is, the less neighboring visual words

appear around vi. As a matter of fact, this situation is more preferred by the classifier as illustrated

in Figure 2.6. Among the four visual words, visual word 3 and 4, which are closely located in the

feature space, are most unreliable ones, since they actually depict the same part of a car label just

under different viewing condition. In other word, these two visual words are over-discriminative

and should be merged into one. Such over-discriminative will lead to a high probability of incorrect

visual word assignment during vector quantization process of Bag-of-Features model and result in

a worse recognition performance. Therefore, a lower importance weight should be given towards

them. We then define the inter-words aggregation weighting as follows:

winter(vi) = log(c(vi) + 1) (2.7)

Combine Inter-word Relationship into TF-IDF

Finally we aim to achieve a combined weighting scheme which not only capture the inter-word

relationship, but also emphasize the visual words’ within-class and between-class importance. Let

dj represents the jth class and the final weighting value wij is given by:

wij = wlocal(vi) · winter(vi) · (tfij · log
N

ni
) (2.8)
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Visual Word 1

Visual Word 2

Visual Word 3

Visual Word 4

Over-discriminative Visual Words

Figure 2.6: The illustration of over-discriminative visual words

where tfij is the number of occurrence of visual word vi in class dj , N is the total number of

classes and ni is the number of class having visual word vi. In this weighting definition, wlocal(vi)

up-weights the visual words which is a good cluster center form by aggregated local features, while

winter(vi) degrades the visual words which might be over-discriminative in the visual codebook.

Meanwhile tfij emphasize visual words occurring frequently in a particular class and log N
ni

down-

weights visual words appearing frequently between different classes.

2.4 Experimental Results

To verify the performance of our proposed Visual Words Aggregation Weighting scheme, ex-

periments on Paris database for location recognition are conducted and detailed implementations

and results are listed in this section.

2.4.1 Database

The original Pairs database consists of 6412 images collected from Flickr by searching 12

particular locations of Pairs, where the average size of each image is approximately 768 × 1024

pixels [1]. Among them, we select 1080 images belonging to 9 different locations, as is shown in

Figure 2.7. And for each location we assign 120 images, from which 20 images are randomly chosen

as the training images and the rest images are all considered as queries.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.7: Pairs database from [1] (a) La Defense, (b) Eiffel Tower, (c) Hotel des Invalides, (d)
Louvre, (e) Moulin Rouge, (f) Arc de Triomphe, (g) Notre Dame, (h) Pantheon, (i) Sacre Coeur
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2.4.2 Results and Discussions

We compare the proposed Visual Words Aggregation Weighting scheme with the state-of-art

TF-IDF weighting method [24] [23]on Pairs database. Figure 2.8 demonstrates the variation of

average recognition rate of 9 locations towards different visual codebook sizes ranging from 1000

to 5000 at the interval of 500 and the experimental data are all summarized in Table 2.2. It is

obvious that our proposed Visual Words Aggregation Weighting which takes the compactness of

visual words’ distribution into consideration yields superior performance to the popular TF-IDF

weighting method. Meanwhile, another interesting observation from Figure 2.8 is that compared

with TF-IDF, the average recognition rate of proposed weighting scheme is less fluctuate towards

the change of visual codebook size. It is generally acknowledged that there is still no consensus how

to set the appropriate size of visual codebook [24] [40] [41] of Bag-of-Features model. However by

adopting our proposed weighting scheme, this issue can be alleviated or even sidestepped to some

extent. Figure 2.9 shows a recognition rate comparisons between our proposed weighting scheme

and TF-IDF weighting on each of the 9 locations in the Paris database when the visual codebook

size is set to be 4000. It is apparently that our proposed weighting scheme significant improves the

recognition rate for 8 out of total 9 locations and slightly drops for only one location. In summary, our

proposed Visual Words Aggregation Weighting scheme provides a superior performance compared

with the current state-of-arts TF-IDF method.

Table 2.2: The average recognition rate comparisons of two weighting schemes: Proposed Visual
Words Aggregation Weighting and TF-IDF on Pairs database

Visual Codebook Size Proposed TF-IDF

1000 67.2% 66.9%

1500 69.2% 67.3%

2000 69.7% 68.7%

2500 70.1% 69.2%

3000 70.5% 69.8%

3500 71.5% 69.9%

4000 72.0% 70.4%

4500 71.7% 69.1%

5000 71.2% 68.3%

Mean Average Recognition Rate 70.34% 68.84%
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Figure 2.8: The average recognition rate curve comparisons of two weighting schemes: proposed
Visual Words Aggregation Weighting and TF-IDF on Pairs database
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Figure 2.9: The average recognition rate comparisons of two weighting schemes: proposed Visual
Words Aggregation Weighting and TF-IDF on each location of Pairs database, the size of codebook
is set to be 4000
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Chapter 3

Image Registration via Region

Pairing

3.1 Introduction

Image registration of large viewpoint variation, or so called wide-baseline image matching, is

one of fundamental challenges in computer vision and is experiencing a growing interest for the

task of object recognition [4] [42], structure and motion estimation [43] [32], and so forth. The

predominant framework is to establish the correspondence of interest points by means of extracting

distinctive local image features, which are expected to be invariant towards various geometric and

photometric changes. However, these feature-based approaches usually suffer from the ambiguity of

local image features. Therefore, the search for similar image feature between the reference image

and target image typically leads to a high percentage of mismatches in putative correspondence. As

a result, how to discard those mismatches becomes one of the central problems to be solved.

One typical way to address this problem is to assume that all image features in the reference

image undergo a rigid transformation [44] [45]. However, this method is unapplicable when non-rigid

deformation exists. A more flexible scheme is presented by Ferrari etal [42], where the author propose

an algorithm consisting of two operations: expansion and contraction of correspondence points

and mismatches are slowly removed. The main problem with this method is high computational

complexity of the whole algorithm. Recently, information about the geometric and spatial layout of

image features have also been considered for proposing robust image matching algorithms [46] [47]

[48] [49]. These methods formulate image matching as a graph matching problem by defining a cost

function which evaluate both the appearance similarity and the pairwise geometric compatibility

between image features. Although all these methods demonstrate a promising results under the

assumption of low percentage of mismatches in putative correspondence, in the real case of wide-

baseline matching, this percentage is often above 50% due to large viewpoint variation, significant
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clutter and occlusion occurring between the image pair.

In this work, we try to eliminate this matching ambiguity by adding a spatial support from

image segmentation, which aims to find the corresponding region pairs that are both coherent within

the images and similar across images. We refer these region pairs as Common Saliency Region

Pair(CSRP) and defines them as follows:

1. Each region in the pair should be coherent in both photometry and geometry.

2. Putative matches falling within CSRP are regarded as correct point-to-point matches.

3. One-to-one constraint of CSRP: a common saliency region cannot be matched to two com-

mon saliency regions which are on the same image.

4. Compared with the mismatched CSRP, the corrected matched CSRP always has a higher

similarity measurement.

We intend to determine CSRP from the support of putative matches within these regions by

formulating this problem into bipartite graph matching. The main advantage of our formulation is

to combine the inter image similarity with the intra image similarity in a systematic way to impose

the constrain of feature spatial configuration. Thus, global common saliency region correspondence

and local point-to-point feature correspondence would have a mutual verification to maximal reduce

the mismatches in putative correspondence.

3.2 Problem Formulation

We formulate wide-baseline image matching via region pairing as follows. The local image

feature for reference image Ir and target image It is described as fr and f̃t respectively. Then

putative match set Prt representing a initial correspondence between the reference image feature set

Or and target image feature set Ot could be denoted by

Prt = {(fr, f̃t)|f̃t ∈ Ot, fr ∈ γ(f̃t, Or), sf (fr, f̃t) > τs} (3.1)

where γ(·) is the nearest neighbor matching between the target image feature f̃t ∈ Ot and the

reference image feature set Or. Function sf (·) represents the ratio test [50] of two features and τs is

the predefined ratio threshold.

Furthermore, over-segmentation [51] is performed on both reference image and target image

to obtain two homogenous region sets Rr and Rt, our goal is to determine CSRP from these two

region sets by inspecting the mutually coherent putative feature correspondence and finally reject

the mismatches in Prt.
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3.3 Proposed Graph Model for Region Pairing

We use bipartite graph G(V,E) to model our region pairing problem to determine CSRP. A

bipartite graph is a graph whose vertices can be divided into two disjoint sets S and T such that

every edge connects a vertex in S to one in T . Therefore, in the following section, we would first

introduce how we define and group the vertices of the graph. Then detailed explanation shall be

given on how we establish the edges and assign their associated weights.

3.3.1 Vertices of Bipartite Graph

In order to well define the vertices of bipartite graph, we shall first introduce the following

three definitions:

Definition 1: If there is a point-to-point putative feature match (fr, f̃t) falling within the

region ri and r̃j in the reference image Ir and target image It individually, the region pair (ri, r̃j) is

called a putative region match. And region r̃j is called the putative correspondence region of region

ri.

As is shown in Figure 3.1, a putative region match is actually a spatial expansion of putative

feature match from single pixel towards a homogenous region.

Figure 3.1: An example of putative region match. The yellow cross indicates the point-to-point
feature putative match. The red and blue regions are the resulting putative region match.

Definition 2: For a given region in either reference image Ir or target image It, if there

exist putative regions matches, the connected putative correspondence regions are called unreliable

segments. Otherwise they are called reliable segments.

The intrinsic idea behind the reliable and unreliable segments is to try to overcome the disad-

vantage of image over-segmentation that successive images of the same scene do not always yield

to the same image segments due to illuminance, viewpoint or scale variations. Typically, a region

in the reference image may always be segmented into two or more smaller segments in the target

image and vice versa. This phenomenon can be favourably detected and compensated by unreliable

segments, indicating mutual connected putative correspondence regions should be representing a

same region and thus need to be merged together to form a new reliable segments.
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Figure 3.2: An illustration of merge operation on unreliable segments.

In Figure 3.2, a simple illustration of above-mentioned merge operation on unreliable segments

is given. For the given region ri in the reference image, region r̃j , r̃k and r̃l are the putative

correspondence regions in the target image. Furthermore, regions r̃k and r̃l are connected, therefore

we refer them as unreliable segments and a merge operation is performed to obtain a new reliable

segment r̃p beside the original one r̃j . Meanwhile, after this merge operation, all the regions engaged

in putative region matches are reliable segments. As a matter of fact, for the given putative region

matches of the reference image and target image, we could always find unique reliable putative region

matches, whose definition is given below, by a series of merge operation indicated in Algorithm 1.

Definition 3: If all the regions in the putative region matches of the reference image Ir and

target image It are reliable segments, these putative region matches are called reliable putative region

matches.

With the help of the above three definitions, we could further define the vertices of our bipartite

graph as follows:

Vertices of Bipartite Graph: The vertices of bipartite graph V are composed by two disjoint

sets S and T , which are the regions of the reliable putative region matches lying in the reference

image Ir and target image It respectively.

3.3.2 Edge and Weights of Bipartite Graph

Since the vertices of bipartite graph all come from the reliable putative region matches, it is

very natural to assign an edge for each match (ri, r̃j). The main problem is how we evaluate the

consistency between these two regions and assign an appropriate weight towards the edge.

Photometric Consistency: This value encodes the photometric consistency between two

regions. Let us assume for each reliable putative region match (ri, r̃j), there are L putative point-

to-point feature matches falling inside. In this work, we use affine covariant region detector [52] [53]

as feature detector and scale invariant feature transform (SIFT) [4] as feature descriptor. Thus, we

could represent the kth putative feature match as Ck(fi, f̃j) = (xi, x̃j ,Hij), where xi, x̃j and Hij

denotes the coordinate of feature fi in the reference image, coordinate of feature f̃j in the target

image and homography to transform the covariant region pi around feature fi to covariant region
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Algorithm 1 Algorithm to Obtain Reliable Putative Region Matches by Merge Operation

INPUT: The putative region matches M = (S, T ), where the region set in reference image Ir is

S = {r1, r2, · · · , rn} and region set in target image It is T = {r̃1, r̃2, · · · , r̃n}
OUTPUT: The reliable putative region matches R

for i = 0 to n do

For the region ri in the reference image Ir, find its putative correspondence regions PR(ri) in

the target image It.

if region r̃k, · · · , r̃l in PR(ri) is connected then

Merge region r̃k, · · · , r̃l together as a new region r̃m and replace the corresponding putative

region match in M and T .

end if

end for

for i = 0 to length of set T do

For the region r̃i in the target image It, find its putative correspondence regions PR(r̃i) in the

reference image Ir.

if region rk, · · · , rl in PR(r̃i) is connected then

Merge region rk, · · · , rl together as a new region rm and replace the corresponding putative

region match in M and S.

end if

end for

Let R = M
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p̃j around feature f̃j , respectively.

Then for each putative feature match Ck(fi, f̃j), let us define the similarity of its two covariant

regions by

sphoto(Ck(fi, f̃j)) = 1 +NCC(pi, p̃j)−
dRGB(pi, p̃j)

100
(3.2)

where NCC is the normalized cross-correlation between the gray level image region, while dRGB

is the average pixel-wise Euclidean distance in RGB color-space after independent normalization of

the 3 colorbands for photometric invariance [42]. Before computation, region pi and p̃j should be

normalized to unit circles and rotated to the same dominant orientation using homography mapping

Hij . Furthermore, we could define the overall photometric similarity of putative region match (ri, r̃j)

as

simphoto(ri, r̃j) =
1

L

L∑
k=1

sphoto(Ck(fi, f̃j))
2 (3.3)

Region Context Consistency: This value verifies the region context similarity of the given

putative region match. And Figure 3.3 demonstrates a simple example why photometric consistency

alone cannot produce reliable region match. As is shown in Figure 3.3(a) and Figure 3.3(b), the

smaller yellow ellipses indicate the covariance regions pi, p̃j of putative feature match (fi, f̃j). It is

apparent that this is a false match, resulting in a false putative region match easily. However, if

we normalize these two regions using homography Hij and present the results in Figure 3.3(c) and

Figure 3.3(d). We would surprisingly discover that these two image patches are quite similar, in

other words, the photometric similarity measurement of Equation 3.2 would be very high, thus leads

to a contrary conclusion.

In order to solve this problem, we enlarge the covariance regions ω times, and define the

new regions qi, q̃j as neighborhood regions, indicated by the big yellow ellipses in Figure 3.3(a) and

Figure 3.3(b). We then perform the same normalization and obtain two drastically different image

patches shown in Figure 3.3(e) and Figure 3.3(f), leading to the correct conclusion that (fi, f̃j) is

a false match. From here we could see the consistency of neighborhood regions is a necessarily

complementary measurement for reliable region match.

We, therefore, construct a new descriptor pairs (Ui, Ũj) on the normalized image patches

qni, q̃nj . (Ui, Ũj) comprises 16 SIFT-like gradient orientation histograms with 8 bins [4] extracted

on the given image patches. And we could further define the following similarity measurement on

neighborhood regions for each putative feature match Ck(fi, f̃j):

sneighbor(Ck(fi, f̃j)) =
1

2
(∥Ui − Ũj∥2 +

dRGB(qni, q̃nj)

100
) (3.4)

Finally we could define the overall region context consistency of putative region match (ri, r̃j)

as

simneighbor(ri, r̃j) =
1

L

L∑
k=1

sneighbor(Ck(fi, f̃j))
2 (3.5)
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(a) (b)

(c) (d) (e) (f)

Figure 3.3: An illustration for region context consistency. (a) reference image, (b) target image, (c)
normalized covariance region in reference image, (d) normalized covariance region in target image,
(e) normalized neighborhood region in reference image, (f) normalized neighborhood region in target
image
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Maximality of Putative Feature Matches: This value represents the relative number of

putative feature matches lying in the corresponding putative region match. It is obvious that the

higher this value is, the more likely putative region match is to be correct. Therefore, this value is

defined by the following equation

simnum(ri, r̃j) =
L

max(Area(ri), Area(r̃j))
(3.6)

where Area(·) is to calculate the area of the input region.

From Equation 3.3, 3.5, and 3.6, the edge weight for each putative region match is given by

E(ri, r̃j) = λphotosimphoto(ri, r̃j) + λneighborsimneighbor(ri, r̃j) + λnumsimnum(ri, r̃j) (3.7)

3.4 Bipartite Graph Matching

From the definition of bipartite graph G(V,E) in the above section, it is not very difficult

to find this graph is actually featured by many-to-many correspondence. In order to determine

CSRP, which is obligated by one-to-one constraint, bipartite graph matching is used to find the best

one-to-one match M between the disjoint vertex sets S and T belonging to graph G(V,E).

Suppose the numbers of vertices in S and T are m and n respectively, Ei,j represents the edge

weight between the ith vertex in set S and jth vertex in set T . If these two vertices do not have

any edge between them, E is set to be 0. We further define a incidence vector x by

xi,j =

1, (i, j) ∈ M

0, otherwise
(3.8)

Hence the above bipartite graph matching problem can be converted into a integer program

listed below:

max

n∑
j=1

m∑
i=1

Ei,jxi,j

subject to

n∑
j=1

xi,j = 1, i ∈ S

m∑
i=1

xi,j = 1, j ∈ T (3.9)

We then use Hungarian method to find the optimal incidence vector x in Equation 3.9. And

CSPR is determined by Equation 3.10
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CSPR = {(i, j) | (i, j) ∈ M,Ei,j ≥ τr} (3.10)

where τr is a predefined threshold for the edge weights. And the putative feature matches

within CSRP are all regarded as our final matches.

3.5 Experimental Results

3.5.1 Implementation Parameters

For local image feature extraction, we use Hessian-Affine detector [53] with SIFT as a feature

descriptor. After putative feature matching, potential mismatches are rejected through the ratio

test with the threshold τs = 0.8. In our experiments, the parameters in edge weight of bipartite

graph are fixed as follows: λphoto = 13, λneighborhood = 2, λnum = 4. And threshold for the edge

weights τr is set to the value for output final top 100 best matches.

3.5.2 Results and Discussions

To evaluate the performance of our proposed algorithm, we test it on 3 sequences: fountain,

castle and Herz-Jesu from the dataset created by EPFL [5]. Each sequence contains several images

of the same building captured under different viewpoint at the interval of approximate 20 degrees.

We further select 4 image pairs from each sequence with the viewpoint variation around 80 degrees

as our test data and some of them are shown in Figure 3.4. Those images pose several challenges on

the wide-baseline matching, like significant viewpoint difference, uniform color and texture as well

as many repetitive structure. Consequently, the correct match for a given point may usually fail

when SIFT matching is applied alone, as is shown in Figure 3.5(a). However, our proposed method

on one hand efficiently bundles the features lying in the similar color and texture region together to

perform matching, while on the other hand remarkably eliminates the matches containing feature

points in different image segments. In this way, the matching ambiguous is greatly reduces as in

Figure 3.5(b).

To compare quantitatively the difference between the SIFT matching and our proposed method,

we count how many correct matches are there in the final top 100 best matches from these two

methods respectively and Table 3.1 shows the percentage of correct matches of 4 sequences. It is

obvious that the number of correct matches in all sequence is around 2 times higher than that in

the SIFT matching.
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Figure 3.4: Image 1 and 5 of test sequence fountain, castle and Herz-Jesu

Table 3.1: Percentage of Correct Matches on EPFL Dataset of Top 100 Matches

Sequences Image Number SIFT Proposed Method

1, 5 72% 86%

fountain
2, 6 67% 95%

3, 7 54% 94%

4, 8 57% 100%

1, 5 37% 78%

castle
2, 6 36% 71%

3, 7 37% 74%

4, 8 31% 68%

1, 5 35% 68%

Herz-Jesu
2, 6 42% 89%

3, 7 33% 72%

4, 8 22% 54%
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(a)

(b)

Figure 3.5: Top 100 matches of image 3 and 6 of sequence Herz-Jesu by (a) SIFT matching, (b) our
proposed method
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Chapter 4

Conclusions and Future Works

4.1 Conclusions

In this report, two difficulties of Visual Location Recognition and Registration are presented.

The first one is how to best represent each location and architect an accurate and robust location

recognition system. While the latter one is how to eliminate the matching ambiguity often oc-

curred in the image registration of large viewpoint variation. Therefore, in this section we would

briefly recapitulate our main contributions in solving the above two problems and highlight the most

important experimental findings.

Location Recognition based on Bag-of-Features Model: Chapter 2 has presented an

orderless Bag-of-Features model for recognizing different locations through the images captured

under large scale changes, rotations and even perspective distortions. The use of visual word his-

togram has enabled us to best characterize each location under a wide range of geometric variability

and therefore a fast and reliable classification can be performed. Being aware that different visual

words actually carry different discrimination information in the sequential location classification, we

propose a simple while novel visual word weighting scheme: Visual Words Aggregation Weighting,

which considers those visual words being the cluster centers of highly aggregated local image features

while with less neighboring words to be important than others. By applying this weighting scheme, a

weighted visual histogram would be obtained and used in the following location classification and the

experiment results in Section 2.4.2 show a significantly improvement in the final location recognition

rate when compared with the state-of-art TF-IDF weighting algorithm.

Image Registration via Region Pairing: Chapter 3 has presented a novel image regis-

tration algorithm via region pairing, which intends to eliminate the matching ambiguity by adding

a spatial support from exploring the similarity within the image. First, image over-segmentation

is used to group image pixels into local homogenous regions and point-to-point feature matches

are established. Then we propose a bipartite graph model to represent the relationship between
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those coherent segments and finally graph matching is utilized to obtain one-to-one region pairing

results, which significantly facilitates rejecting the mismatches in the pervious point-to-point feature

correspondence. In Section 3.5.2, a number of image pairs of different sequences featuring severe

viewpoint variation, uniform color and texture as well as self-similarities are tested and the obtained

experiment results indicate our algorithm is adequate for the use in the real world situations.

4.2 Future Works

In the future, we will work towards improving the flexibility, discriminative power, and ex-

pressiveness of Bag-of-Features model to further increase the accuracy and robustness of location

recognition.

Feature Representation: The salient region detectors and appearance-based descriptor used

in this report are all best at capturing stable and distinctive texture patterns. Consequently, our

proposed method would always fail for those location, which do not characterized in their texture

and appearance, such as in Figure 4.1. In order to overcome this difficulty, a shape detector and

descriptor should be developed as a complimentary of texture [54].

(a) (b)

Figure 4.1: Locations lacking texture information challenge the capabilities of our current repre-
sentation methods in the Bag-of-Features model: (a) Plaster sculpture exhibition in the National
Gallery, London; (b) Louvre glass pyramid

Sparse Coding for Codebook Generation: How to discriminately design the visual code-

book still remains as the central problem for the Bag-of-Features model. Recent research [55] based

on sparse codes of SIFT features indicates that by relaxing the restrictive cardinality constraint of

the K-means during the codebook generation and using max spatial pooling instead of computing

histogram, the new image representation captures more salient properties of visual patterns and

turns out to work much better even with linear classifier. Therefore, further research of this in

empirical study and theoretical understanding is an interesting direction.
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